If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=77
We move all terms to the left:
b^2-(77)=0
a = 1; b = 0; c = -77;
Δ = b2-4ac
Δ = 02-4·1·(-77)
Δ = 308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{308}=\sqrt{4*77}=\sqrt{4}*\sqrt{77}=2\sqrt{77}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{77}}{2*1}=\frac{0-2\sqrt{77}}{2} =-\frac{2\sqrt{77}}{2} =-\sqrt{77} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{77}}{2*1}=\frac{0+2\sqrt{77}}{2} =\frac{2\sqrt{77}}{2} =\sqrt{77} $
| 13x+34+10x+10+90=180 | | x^2=−36 | | x^2-2x+3=-2x+12 | | 90+2x-15+3x=180 | | 5-1/3y=-15 | | 4(x+-5)+-5=6x+7.4-4x | | 7s+34=139 | | 0.55p−6=0.45p | | 2-a=3-1 | | -8=b+1 | | -9-2r+4r=4r+3r | | 10x^2+20x-89=9 | | 4s+19=79 | | -4r-6r=-8-2r+6+2 | | x+90=5x-114 | | -2+3p=12+p | | c-5=-4 | | X(n)+X(n+1)=55 | | -16-2k=k-5+8k | | 2x-(4x+1)=7 | | 3+5k=8(4-9k | | 5x+4-2x=19+6 | | 11-3x=1-5x | | 25x+2=11x-1 | | 25x-244=-1806 | | 10x=11x-7 | | 8x+4=(×-1) | | 2/3a=1/9 | | 10w+19+3w=6(9+w)-1 | | 8x+4(×-1=) | | 2(x+2)+x+3=28 | | 116=x+102 |